Nome: Matricola:

ALGEBRA LINEARE

Quinto appello 3/07/2018

Esercizio 1

Sia $V = U \oplus W$ uno spazio vettoriale su \mathbb{R} di dimensione 4 che sia somma diretta di due sottospazi U e W di dimensione 2. Siano $\{u_1, u_2\}, \{w_1, w_2\}$ basi rispettivamente di U e di W. Siano $T_a, a \in \mathbb{R}$ endomorfismi di V la cui matrice associata rispetto alla base $\{u_1, u_2, w_1, w_2\}$ sia

$$M_a = \left(\begin{array}{cccc} a & 1 & 0 & 0 \\ -1 & a+1 & 0 & 0 \\ 0 & 0 & -1 & 2 \\ 0 & 0 & 4 & 1 \end{array}\right)$$

- 1. Dimostrare che qualunque sia $a, T_a(U) \subset U, T_a(W) \subset W$.
- 2. Determinare i valori di a per cui T_a è triangolabile.
- 3. Determinare i valori di a per cui T_a è diagonalizzabile.
- 4. Per i valori di a per cui T_a è diagonalizzabile, dimostrare che esiste una base di autovettori $\{v_1, v_2, v_3, v_4\}$ di T_a tale che $U = span\{v_1, v_2\}, W = span\{v_3, v_4\}$, cioè anche le restrizioni di T_a ai sottospazi U e W sono diagonalizzabili.

Esercizio 2.

Sia A una matrice quadrata a coefficienti reali di ordine n. Sapendo che A è diagonalizzabile e che i suoi autospazi $V_{\lambda_1},\ldots,V_{\lambda_k}\subset\mathbb{R}^n$ sono in somma diretta ortogonale (ossia tutti gli autospazi sono ortogonali fra loro) dimostrare che A è simmetrica.

Esercizio 3. Si consideri lo spazio vettoriale $V = \mathbb{R}_3[x] = \{\text{polinomi di grado minore o uguale a 3}\}. Sia <math>f: V \to V \text{ così definita}$:

$$f(p(x)) = (2x+1)p'(x)$$

Si chiede

- Se f è lineare.
- $\bullet\,$ Se la risposta è affermativa se f è triangolabile.
- $\bullet\,$ Se la risposta è affermativa se f è diagonalizzabile
- $\bullet\,$ Se f è diagonalizzabile trovare in V una base di autovettori per f.